PSU Applied Learning: Who Says Class Can’t Be Cool?

By Lisa Scott, MS in Environmental Science and Policy student

This semester at Plymouth State University (PSU), my Contaminant Hydrology class had the opportunity to transform a group project on the abandoned Ore Hill mine site into a report for the US Forest Service (USFS). The Ore Hill site is located in the town of Warren, New Hampshire, and was mined for metals from the late 1800s through the early 1900s, before its abandonment in 1915. Acid mine drainage containing high metal concentrations seeping from the site have contributed to unknown ecological impacts overtime. In 2006, the USFS took steps to improve mine site conditions through physical removal of mine tailings and installation of remediation systems on site.

We visited the Ore Hill mine in late September 2014 to assess site conditions. Our visit was extremely valuable for visualizing the site layout and observing water and contaminant flowpaths. We saw building debris where the old mine had existed, and the drip pipe where the contaminant source persists.  As we observed the layout of the site (Slopes, flowpaths, culverts, and vegetation) we were able to see how contaminants move through the system rather than imagining based on reading old reports.

Our class focused on two of the main contaminant removal systems on site: the bioreactor and wetlands. The bioreactor acts as a settling pond to help metals fall out of solution from inflowing water before it is discharged to the lower portion of the site. Although the term “bioreactor” may sound like a deadly experimentation device from a SciFi movie, it is simply used to increase the amount of time metals have to be separated from flowing water.

The second removal system we looked at were the wetlands at Ore Hill. Increased vegetation is often used as an effective contaminant removal system. Phytoremediation is a common term used to describe plants’ ability to uptake contaminants, such as metals, and improve land and water quality. Wetlands have the added benefit of being high in organic matter and low in oxygen. These conditions promote additional metal removal by causing metals to precipitate out, or come out of the water solution. Continue reading

Is Total Coliform in your NH Public Drinking Water Supply? In 2015, they Won’t tell you.

Author:  Kristen Melendez, ES&P M.S. candidate, 2016

It’s Thursday, November 6, 2014, at 1:00 pm.  I’m in the auditorium at the NH Department of Environmental Services (DES); the room is packed, with few empty seats in sight.  Public water suppliers from all across the State of NH have filled the room.  Everyone is waiting to hear what Mr. Rick Skarinka, Civil Engineer for NH DES, has to say about how NH DES is going to implement EPA’s Revised Total Coliform Rule (RTCR).

Portion of EPA RTCR Summary Guide; Source: http://water.epa.gov/

This is huge.  The TCR was established by EPA in 1989 and has not been overhauled since.  That is, until revisions were published in the Federal Register on February 13, 2013.  So why all the fuss more than a year and a half later?  EPA has set a compliance date of April 1, 2016 – and NH DES is implementing the rule early.

NH will be the first state in the entire Nation to execute the changes specified in the RTCR.  Beginning January 1, 2015, all NH public water systems will need to comply. Continue reading

Hello! Welcome to the MS ESP student blog!

As ES&P graduate students, you can catch us working hard in our offices, labs, and especially throughout our New Hampshire backyard. This page will provide a regular window into the projects and play of the graduate student researchers in the Environmental Science & Policy M.S. program at Plymouth State University. Stay tuned!